

1

 SHRIMATI INDIRA GANDHI COLLEGE

Affiliated to Bharathidasan University

Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC

An ISO 9001:2015 Certified Institution

Thiruchirrappalli

 ADVANCED DATABASE MANAGEMENT SYSTEMS

 (P22ITCC12)

STUDY MATERIAL

2

Prepared by

Ms.P. ANANTHI, Ms.V.VETRISELVI

Assistant Professors in Computer Science

SHRIMATI INDIRA GANDHI COLLEGE

TIRUCHIRAPPALLI – 2.

3

ADVANCED DATABASE MANAGEMENT SYSTEMS

(P22ITCC12)

UNIT-1

Database: File Processing System Vs DBMS, History, Characteristic-

Abstraction levels, Architecture of a database, Functional components of

a DBMS, DBMS Languages-Database users and DBA.

File Processing System Vs DBMS

A database management system coordinates both the physical and the

logical access to the data, whereas a file-processing system coordinates only

the physical access.

A database management system is designed to allow flexible access to data

(i.e. queries), whereas a file-processing system is designed to allow

predetermined access to data (i.e. compiled programs).

A database management system is designed to coordinate multiple users

accessing the same data at the same time. A file-processing system is

usually designed to allow one or more programs to access different data

files at the same time. In a file-processing system, a file can be accessed

by two programs concurrently only if both programs have read-only access

to the file.

Redundancy is control in DBMS, but not in file system.

Unauthorized access is restricted in DBMS but not in the file system.

DBMS provide backup and recovery whereas data lost in file system can't be

recovered.

DBMS provide multiple user interfaces. Data is isolated in file system.

4

DBMS File Processing System

Minimal data redundancy problem in

DBMS
Data Redundancy problem exits

Data Inconsistency does not exist Data Inconsistency exist here

Accessing database is easier Accessing is comparatively difficult

The problem of data isolation is not

found in database

Data is scattered in various files and files

may be of different format, so data isolation

problem exists

Transactions like insert, delete, view,

updating, etc are possible in database
In file system, transactions are not possible

Concurrent access and recovery is

possible in database

Concurrent access and recovery is not

possible

Security of data Security of data is not good

A database manager (administrator)

stores the relationship in form of

structural tables

A file manager is used to store all

relationships in directories in file systems.

History of Database

1950s and early 1960s:

o Data processing using magnetic tapes for storage

o Tapes provided only sequential access

o Punched cards for input

Late 1960s and 1970s:

o Hard disks allowed direct access to data

o Hierarchical and network data models in widespread use

 IBM’s DL/I (Data Language One)

 CODAYSL’s DBTG (Data Base Task Group) model

→ the basis of current DBMSs

o Ted Codd defines the relational data model

 IBM Research develops System R prototype

 UC Berkeley develops Ingres prototype

5

Entity-Relationship Model for database design 1980s:

 Research relational prototypes evolve into commercial systems

 DB2 from IBM is the first DBMS product based on the

relational model

 Oracle and Microsoft SQL Server are the most

prominent commercial DBMS products based on the

relational model

SQL becomes industrial standard

Parallel and distributed database systems

Object-oriented database systems (OODBMS)

 Goal: store object-oriented programming objects in

a database without having to transform them into

relational format

 In the end, OODBMS were not commercially

successful due to high cost of relational to object-oriented

transformation and a sound underlying theory, but they

still exist

 Object-relational database systems allow both relational

and object views of data in the same database

Late 1990s:

 Large decision support and data-mining applications

 Large multi-terabyte data warehouses

 Emergence of Web commerce

6

Early 2000s:

 XML and XQuery standards

 Automated database administration

Later 2000s:

 Web databases (semi-structured data, XML, complex data types)

 Cloud computing

 Giant data storage systems (Google BigTable, Yahoo PNuts,

Amazon Web Services, …)

Characteristics of a Database

Stores any kind of Data

A database management system should be able to store any kind of data.

It should not be restricted to the employee name, salary and address. Any kind

of data that exists in the real world can be stored in DBMS because we need to

work with all kinds of data that is present around us.

Support ACID Properties

Any DBMS is able to support ACID (Accuracy, Completeness, Isolation,

and Durability) properties. It is made sure is every DBMS that the real purpose

of data should not be lost while performing transactions like delete, insert an

update. Let us take an example; if an employee name is updated then it should

make sure that there is no duplicate data and no mismatch of student

information.

7

Represents complex relationship between data

Data stored in a database is connected with each other and a relationship

is made in between data. DBMS should be able to represent the complex

relationship between data to make the efficient and accurate use of data.

Backup and recovery

There are many chances of failure of whole database. At that time no one

will be able to get the database back and for sure company will be in a big loss.

The only solution is to take backup of database and whenever it is needed, it

can be stored back. All the databases must have this characteristic.

Structures and described data

A database should not contains only the data but also all the structures

and definitions of the data. This data represent itself that what actions should

be taken on it. These descriptions include the structure, types and format of

data and relationship between them.

Data integrity

This is one of the most important characteristics of database management

system. Integrity ensures the quality and reliability of database system. It

protects the unauthorized access of database and makes it more secure. It

brings only the consistence and accurate data into the database.

Concurrent use of database

There are many chances that many users will be accessing the data at the

same time. They may require altering the database system concurrently. At that

time, DBMS supports them to concurrently use the database without any

problem.

8

Abstraction levels

A database system is a collection of interrelated data and a set of programs

that allow users to access and modify these data. A major purpose of a database

system is to provide users with an abstract view of the data. That is, the system

hides certain details of how the data are stored and maintained.

Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for

efficiency has led designers to use complex data structures to represent data in

the database. Since many database-system users are not computer trained,

developers hide the complexity from users through several levels of abstraction,

to simplify users’ interactions with the system:

Database Disk

Levels of Abstraction in a DBMS

 Physical level (or Internal View / Schema): The lowest level of abstraction

describes how the data are actually stored. The physical level describes complex

low-level data structures in detail.

 Logical level (or Conceptual View / Schema): The next-higher level of abstraction

9

describes what data are stored in the database, and what relationships exist

among those data. The logical level thus describes the entire database in terms

of a small number of relatively simple structures. Although implementation of

the simple structures at the logical level may involve complex physical-level

structures, the user of the logical level does not need to be aware of this

complexity.

 This is referred to as physical data independence.

 View level (or External View / Schema): The highest level of abstraction

describes only part of the entire database. Even though the logical level uses

simpler structures, complexity remains because of the variety of information

stored in a large database. Many users of the database system do not need all

this information; instead, they need to access only a part of the database. The

view level of abstraction exists to simplify their interaction with the system. The

system may provide many views for the same database.

For example, we may describe a record as follows:

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a

name and a type associated with it. A university organization may have several such

record types, including

department, with fields dept_name, building, and budget

course, with fields course_id, title, dept_name, and credits

student with fields ID, name, dept_name and tot_cred

 At the physical level, an instructor, department, or student record can be described

as a block of consecutive storage locations.

 At the logical level, each such record is described by a type definition, as in the

previous code segment, and the interrelationship of these record types is defined

10

as well.

 Finally, at the view level, computer users see a set of application programs that

hide details of the data types. At the view level, several views of the database are

defined, and a database user sees some or all of these views.

Architecture of a Database

The architecture of a database system is greatly influenced by the underlying computer

system on which the database system runs. Database systems can be centralized, or

client- server, where one server machine executes work on behalf of multiple client

machines.

Database systems can also be designed to exploit parallel computer architectures.

Distributed databases span multiple geographically separated machines.

A database system is partitioned into modules that deal with each of the responsibilities

of the overall system. The functional components of a database system can be broadly

11

divided into the storage manager and the query processor components. The storage

manager is important because databases typically require a large amount of storage

space. The query processor is important because it helps the database system simplify

and facilitate access to data.

Query Processor:

The query processor components include

· DDL interpreter, which interprets DDL statements and records the definitions in

the data dictionary.

DML compiler, which translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query evaluation

engine understands. A query can usually be translated into any of a number of

alternative evaluation plans that all give the same result. The DML compiler also

performs query optimization, that is, it picks the lowest cost evaluation plan from

among the alternatives.

Query evaluation engine, which executes low-level instructions generated by

the DML compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the

low level data stored in the database and the application programs and queries

submitted to the system. The storage manager is responsible for the interaction

with the file manager.

12

Transaction Manager:

A transaction is a collection of operations that performs a single logical

function in a database application. Each transaction is a unit of both atomicity

and consistency. Thus, we require that transactions do not violate any database-

consistency constraints.

Components of a Database

User: - Users are the one who really uses the database. Users can be

administrator, developer or the end users.

Data or Database: - As we discussed already, data is one of the

important factor of database. A very huge amount of data will be stored

in the database and it forms the main source for all other components

to interact with each other. There are two types of data. One is user

data. It contains the data which is responsible for the database, i.e.;

based on the requirement, the data will be stored in the various tables

of the database in the form of rows and columns. Another data is

Metadata. It is known as ‘data about data’, i.e.; it stores the information

like how many tables, their names, how many columns and their

names, primary keys, foreign keys etc. basically these metadata will

have information about each tables and their constraints in the

database.

DBMS: - This is the software helps the user to interact with the

database. It allows the users to insert, delete, update or retrieve the

data. All these operations are handled by query languages like MySQL,

Oracle etc.

Database Application: - It the application program which helps the

users to interact with the database by means of query languages.

13

Database application will not have any idea about the underlying DBMS.

DBMS Languages

To read data, update and store information in DBMS, some languages

are used. Database languages in DBMS are given as below.

 DDL – Data Definition Language

 DML – Data Manipulation Language

 DCL – Data Control Language

 TCL – Transaction Control Language

1. Data Definition Language (DDL)

DDL stands for data definition language and used to define database

patterns or structures. DDL is a syntax which is same as syntax of

computer programming language for defining patterns of database.

Few examples of it are:

 CREATE – used to create objects in database

 ALTER – alter the pattern of database

 DROP – helps in detecting objects

 TRUNCATE – erase all records from table

 COMMENT – adding of comments to data dictionary

 RENAME – useful in renaming an object

CREATE statement or command is used to create a new

database. In structured query language the create command

creates an object in a relational database management system.

The commonly used create command is as follows

 CREATE TABLE [name of table] ([definitions of column])

 [parameters of table]

DROP statement destroys or deletes database or table. In structured

query language, it also deletes an object from relational database

management system. Typically used DROP statement is

 DROP type of object name of object

14

ALTER statement enhance the object of database. In

structured query language it modifies the properties of

database object. The ALTER statement is

 ALTER type of object name of object

RENAME statement is used to rename a database. It’s statement is as follows

 RENAME TABLE old name of table to new name of table.

2. Data manipulation language (DML)

It has statements which are used to manage the data within the

pattern of objects. Some of the samples of the statements are as

follows:

 SELECT – useful in holding data from a database

 INSERT – helps in inserting data in to a table

 UPDATE – used in updating the data

 DELETE – do the function of deleting the records

 MERGE – this do the UPSERT operation i.e. insert or update
operation

 CALL – this calls a structured query language or a java subprogram

 EXPLAIN PLAN – has the parameter of explaining data

 LOCK TABLE – this ha the function of controlling concurrency

These syntax elements are similar to the syntax elements used in

computer programming language. Performing the operation of reading of queries

is also a component of data manipulation language. Other forms of data

manipulation languages (DML) are used by IMS, CODASYL databases.

DML also include the structured query language (SQL) data modifying

statements, they modify the saved data but not the pattern of objects. The initial

word of the DML statements has functional capability.

15

The query statement SELECT is grouped with data statements of

structured query language (SQL). In practice there is no such difference and it is

viewed to be a portion of DML.

Data manipulation languages contribute to have distinct relishes between

database sellers.

They are divided as:

 Procedural programming

 Declarative programming

Initially data manipulation languages were only used in computer

programs, but with the coming of structured query languages it is also

used in the database executors.

3. Data Control Language (DCL)

Data Control Language (DCL) is syntax similar to the programming

language, which was used to retrieve the stored or saved data. Examples

of the commands in the data control language (DCL) are:

 GRANT – this permits particular users to perform particular tasks

 REVOKE – it blocks the previously granted untrue permissions

The operations which has the authorization of REVOKE are CONNECT, INSERT,

USAGE, EXECUTE, DELETE, UPDATE and SELECT.

The execution of DCL is transactional; it also has the parameter of rolling

back. But the execution of data control language in oracle database does

not have the feature of rolling back.

4. Transaction Control Language (TCL)

Transaction Control Language (TCL) has commands which are used

to manage the transactions or the conduct of a database. They

manage the changes made by data manipulation language

16

statements and also group up the statements in o logical

management.

Some examples of it are:

• COMMIT – use to save work

• SAVE POINT – helps in identifying a point in the

transaction, can be rolled back to the identified point

• ROLL BACK – has the feature of restoring the

database to the genuine point, since from the last

COMMIT

• SET TRANSACTION – have parameter of changing

settings like isolation level and roll back point

COMMIT command permanently save the transaction in to database.

• It’s syntax is: Commit;

ROLL BACK command uses the save point command to jump to save point in

transaction.

• It’ s syntax is: rollback to name-save point;

SAVE POINT command is used to save a transaction temporarily.

• It’s syntax is: Save point name-save point;

Database Users

Database administrators – DBA is responsible for authorizing access to

the database, for coordinating and monitoring its use, and acquiring

software and hardware resources as needed.

Database designers – identify data to be stored in the database and

choosing appropriate structures to represent and store the data. Most of

these functions are done before the database is implemented and

populated with the data. It is the responsibility of the database designers

17

to communicate with all prospective users to understand their

requirements and come up with a design that meets these requirements.

Database designers interact with all potential users and develop views of

the database that meet the data and processing requirements of these

groups. The final database must support the requirements of all user

groups.

End Users

 Casual End Users – occasionally access, may need different

information each time. Use query language to specify requests.

 Naïve or parametric end users – main job is to query and update

the database using standard queries and updates. These canned

transactions have been carefully programmed and tested.

Examples?

 Sophisticated end users – engineers, scientists, analysts who

implement applications to meet their requirements.

 Stand alone users – maintain personal databases using ready made packages.

DBA

A database administrator’s (DBA) primary job is to ensure that data is

available, protected from loss and corruption, and easily accessible as

needed. Below are some of the chief responsibilities that make up the day-

to-day work of a DBA. DSP deliver an outsourced DBA service in the UK,

providing Oracle Support and SQL Server Support; whilst mindset and

toolset may be different, whether a database resides on-premise or in a

Public / Private Cloud, the role of the DBA is not that different.

1. Software installation and Maintenance

A DBA often collaborates on the initial installation and configuration of

a new Oracle, SQL Server etc database. The system administrator sets

up hardware and deploys the operating system for the database server,

https://www.dsp.co.uk/oracle-database-support/
https://www.dsp.co.uk/sql-server-support-2/

18

then the DBA installs the database software and configures it for use. As

updates and patches are required, the DBA handles this on-going

maintenance. And if a new server is needed, the DBA handles the

transfer of data from the existing system to the new platform.

2. Data Extraction, Transformation, and Loading

Known as ETL, data extraction, transformation, and loading refers to

efficiently importing large volumes of data that have been extracted from

multiple systems into a data warehouse environment. This external data

is cleaned up and transformed to fit the desired format so that it can be

imported into a central repository.

3. Specialized Data Handling

Today’s databases can be massive and may contain unstructured data

types such as images, documents, or sound and video files. Managing a

very large database (VLDB) may require higher-level skills and additional

monitoring and tuning to maintain efficiency.

4. Database Backup and Recovery

DBAs create backup and recovery plans and procedures based on industry

best practices, then make sure that the necessary steps are followed.

Backups cost time and money, so the DBA may have to persuade

management to take necessary precautions to preserve data.

System admins or other personnel may actually create the backups, but it

is the DBA’s responsibility to make sure that everything is done on

schedule.

In the case of a server failure or other form of data loss, the DBA

will use existing backups to restore lost information to the system.

Different types of failures may require different recovery strategies, and

the DBA must be prepared for any eventuality. With technology change,

it is becoming ever more typical for a DBA to backup databases to the

cloud, Oracle Cloud for Oracle Databases and MS Azure for SQL Server.

https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/sql-server-azure/

19

5. Security

A DBA needs to know potential weaknesses of the database software and the

company’s overall system and work to minimize risks. No system is one

hundred per cent immune to attacks, but implementing best practices can

minimize risks.In the case of a security breach or irregularity, the DBA can

consult audit logs to see who has done what to the data. Audit trails are also

important when working with regulated data.

6. Authentication

Setting up employee access is an important aspect of database security.

DBAs control who has access and what type of access they are allowed. For

instance, a user may have permission to see only certain pieces of

information, or they may be denied the ability to make changes to the

system.

7. Capacity Planning

The DBA needs to know how large the database currently is and how fast it

is growing in order to make predictions about future needs. Storage refers

to how much room the database takes up in server and backup space.

Capacity refers to usage level. If the company is growing quickly and adding

many new users, the DBA will have to create the capacity to handle the extra

workload.

8. Performance Monitoring

Monitoring databases for performance issues is part of the on-going

system maintenance a DBA performs. If some part of the system is slowing

down processing, the DBA may need to make configuration changes to the

software or add additional hardware capacity. Many types of monitoring

tools are available, and part of the DBA’s job is to understand what they

need to track to improve the system. 3rd party organizations can be ideal

for outsourcing this aspect, but make sure they offer modern DBA

support.

https://www.dsp.co.uk/modern-dba-support-provider/
https://www.dsp.co.uk/modern-dba-support-provider/

20

9. Database Tuning

Performance monitoring shows where the database should be tweaked to

operate as efficiently as possible. The physical configuration, the way the

database is indexed, and how queries are handled can all have a dramatic

effect on database performance. With effective monitoring, it is possible to

proactively tune a system based on application and usage instead of

waiting until a problem develops.

10. Troubleshooting

DBAs are on call for troubleshooting in case of any problems. Whether they

need to quickly restore lost data or correct an issue to minimise damage, a

DBA needs to quickly understand and respond to problems when they occur.

Introduction to relational model:

The relational model was introduced by Dr.E.F.Codd in 1970.The

relational model represents data in the form of two dimensional tables.

The organization of data into relational tables is known as the logical view

of the database.

Characteristics of Relational Model:

 A relational table eliminates all parent child relationships or

instead represented all data in the database as sample

row/column tables of data values

 A relation as similar to a table with rows/columns of

datavalues

 Each table as an independent entry and there as no physical

relationships betweentables

 Relational model of data management is based on set theory

 The user interface used with relational models as non

procedural because only what needs to be done as specified and

not how it has to be done

21

Fundamental concepts of relations:

Relation:- A Relation can be thought of as a set of records in the form of

two-dimensional table containing rows and columns of data

A relation consists of two things: a relation schema and instance relation.

Relation schema: The relation schema contains the basic information of

a table. This information includes the name of the table, the names of the

columns and the data types associated with each column

Degree

Relation instance: An instance of a relation is a set of types in which

each tuple has the same no. of fields as the relation schema

Relational database schema: A relational database schema is a

collection of relation schemas, describing one or more relations

Cardinality

22

Relation cardinality: The Relation cardinality is the no. of tuples in the

relation Relation degree: The Relation degree as the no.of columns in

the relation Tuples/records: The rows of the table as also known as

records or tuples Field/attributes: The columns of the table as also

known as fields/attributes

Tabular Representation of Various ER Schemas

The relational model is today the primary data model for commercial data

processing applications. It attained its primary position because of its

simplicity, which eases the job of the programmer, compared to earlier

data models such as the network model or the hierarchical model.

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is

assigned a unique name. For example, consider the instructor table of

Figure:1.5, which stores information about instructors. The table has four

column headers: ID, name, dept name, and salary. Each row of this table

records information about an instructor, consisting of the instructor’s ID,

name, dept name, and salary.

Database Schema

When we talk about a database, we must differentiate between the database

schema, which is the logical design of the database, and the database

instance, which is a snapshot of the data in the database at a given instant

23

in time. The concept of a relation corresponds to the programming- language

notion of a variable, while the concept of a relation schema corresponds to

the programming-language notion of type definition.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies,

can be depicted by

schema diagrams. Figure 1.12 shows the schema diagram for our

university organization.

Schema diagram for the university database.

24

Referential integrity constraints other than foreign key constraints are not

shown explicitly in schema diagrams.We will study a different diagrammatic

representation called the entity- relationship diagram.

ER Diagram Notations

An E-R diagram consists of the following major components:

• Rectangles divided into two parts represent entity sets. The first

part, which in this textbook is shaded blue, contains the name of the

entity set. The second part contains the names of all the attributes of

the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set.

Attributes that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationshipset.

• Double diamonds represent identifying relationship sets linked to

weak entitysets

Weak Entity Set-

Consider a section entity, which is uniquely identified by a course

identifier, semester, year, and section identifier. Clearly, section entities are

25

related to course entities. Suppose we create a relationship set sec course

between entity sets section and course. Now, observe that the information

in sec course is redundant, since section already has an attribute course

id, which identifies the course with which the section is related. One option

to deal with this redundancy is to get rid of the relationship sec course;

however, by doing so the relationship between section and course becomes

implicit in an attribute, which is not desirable.

The notion of weak entity set formalizes the above intuition. An entity

set that does not have sufficient attributes to form a primary key is termed

a weak entity set. An entity set that has a primary key is termed a strong

entity set.

For a weak entity set to be meaningful, it must be associated with

another entity set, called the identifying or owner entity set. Every weak

entity must be associated with an identifying entity; that is, the weak entity

set is said to be existence dependent on the identifying entity set. The

identifying entity set is said to own the weak entity set that it identifies. The

relationship associating the weak entity set with the identifying entity set is

called the identifying relationship

had a primary key. However, conceptually, a section is still

dependent on a course for its existence, which is made explicit by

making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a rectangle,

like a strong entity set, but there are two main differences:

26

• The discriminator of a weak entity is underlined with a

dashed, rather than a solid, line.

• The relationship set connecting the weak entity set to

the identifying strong entity set is depicted by a double diamond.

Views

Introduction to views

 The dynamic result of one or more relational operations operating on the

base relations to produce another relation is called view. A view is a virtual

relation that does not necessarily exist in the database. But can be

produced upon request by a particular user at the time of request.

 A view is object that gives the user a logical view of data from an

underlying table or tables. You can restrict what users can view by

allowing them to see only a few columns from a table.

Purpose of views

 The view mechanism is desirable for several reasons.

 It simplifies queries.

 It can be queried as a base table.

 It provides a powerful and flexible security mechanism by hiding

parts of the database from certain users.

 It permits users to access data in a way that is customized to

their needs, so that the same data can be seen by different users

in different ways at the sametime.

27

Updating views

 All updates to a base relation should be immediately reflected

in all views that a single base relation and containing either the

primary key or a candidate key of the baserelation.

 Updates are not allowed through views involving multiple base

relations.

 Updates are not allowed through views involving aggregation or

grouping operations.

Creating views Syntax:

Examples: create view on book table which contains two fields title,

and author name.

SQL> create view V_book as select title, author_name from book;

View created.

SQL>select * from V_book;

CREATE VIEW viewname as SELECT

columnname, cloumnname

FROM tablename

 WHERE columnname=expression list;

28

Output:

Selecting Data from a view

Example: Display all the title of book written by author ‘Basu’.

SQL> select title from V_Book Where

author_name=’Basu’;

Output:

Title

DBMS

ADBMS

Updatable Views

Views can also be used for data manipulation i.e., the user can

perform Insert, Update and the Delete operations on the view. The

views on which data manipulation can be done are called Updatable

Title Author_name

Oracle Arora

DBMS Basu

DOS Sinha

ADBMS Basu

Unix Kapoor

29

views, views that do not allow data manipulation are called Read only

Views. When you give a view name in the update, insert or delete

statement, the modification to the data will be passed to the

underlying table.

For the view to be updatable, it should meet following criteria:

 The view must be created on a single table.

 The primary key column of the table should be included in the view.

 Aggregate functions cannot be used in the select statement.

 The select statement used for creating a view should

not included Distinct, Group by or Having clause.

 The select statement used for creating a view should not include sub

queries.

 It must not use constant, string or values expression like total/5.

Destroying/Altering Tables and Views Altering Table

The definition of the table is changed using ALTER TABLE statement.

The ALTER TABLE is used to add, delete or modify columns in an

existing table explained below:

1) ALTER TABLE…..ADD…..

This is used to add some extra columns into an

existing table. The generalized format is given below.

ALTER TABLE relation_name ADD(new

field1 datatype(size), new field2

datatype(size)’………

30

Example:

ADD customer phone and fax number in the customer relation.

SQL> ALTER TABLE Customer ADD(cust_ph_no varchar(15),

 cust_fax_no varchar(15));

SQL>Table created.

2) ALTER TABLE …..MODIFY

This form is used to change the width as well as data

type of existing relations. the generalized syntax of this

from is shown below.

 Example:

Modify the data type of the publication year as

numeric data type.

SQL> ALTER TABLE Book MODIFY(pub_year number(4));

SQL>Table created.

ALTER TABLE relation_name MODIFY(field1 new data

type(size), field2 new data type(size), fieldn new data

type(size));

31

Restrictions of the Alter Table

Using the alter table clause you perform the following tasks:

Change the name of the table.

Change the name of the

column.

Drop a column.

Decrease the size of a column if table data exists.

3) ALETR TABLE……DELETE

To delete a column in a table , use the following syntax:

 Example: Drop customer fax number

from the customer table.

SQL> ALTER TABLE customer

DROP COLUMN cust_fax_no;

DELETING TABLE

The tables are deleted permanently from the database using DROP

TABLE command. We remove all the data from the table using

ALTER TABLE table_name DROP

COLUMN column_name

32

TRUNCATE TABLE command. It is explained below:

1) DROP TABLE

This command is used to delete a table. The generalized

syntax if this form is given below:

 Example: write the command for deleting special_customer relation.

SQL DROP TABLE Special_customer;

TABLR dropped.

2) Truncate a table

Truncating a table is removing all records from the table. The

structure of the table stays intact. The SQL language has a

DELETE statement which can be used to remove one or more

(or all) rows from a table. Truncation releases storage space

occupied by the table, but deletion does not.

The syntax:

 Example:

SQL> TRUNCATE TABLE student;

Deleting view

DROP TABLE relation_name

TRUNCATE TABLE table_name;

33

A view can be dropped by using the DROP VIEW command.

Syntax:

 Example:

DROP VIEW V_Book;

Triggers.

A trigger is a procedure that is automatically invoked by the

DBMS in response to specified changes to the database, and is typically

specified by the DBA. A database that has a set of associated triggers

is called an active database. A trigger description contains three parts:

Event: A change to the database that activates the

trigger.

 Condition: A query or test that is run when the trigger is

activated.

 Action: A procedure that is executed when the trigger is

activated and its con-dition is true.

A trigger action can examine the answers to the query in the

condition part of the trigger, refer to old and new values of tuples

modified by the statement activating the trigger, execute new queries,

and make changes to the database.

DROP VIEW viewname;

34

Examples of Triggers in SQL

The examples shown in Figure 5.19, written using Oracle 7 Server

syntax for defining triggers, illustrate the basic concepts behind triggers.

(The SQL:1999 syntax for these triggers is similar; we will see an example

using SQL:1999 syntax shortly.) The trigger called init count initializes a

counter variable before every execution of an INSERT statement that

adds tuples to the Students relation. The trigger called incr count

increments the counter for each inserted tuple that satisfies the condition

age < 18.

CREATE TRIGGER init count BEFORE INSERT

ON Students /* Event */ DECLARE

count INTEGER;

BEGIN /*action*/

Count:=0;

END

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event

/ WHEN (new.age < 18) / Condition; ‘new’ is

just-inserted tuple */ FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s

PL/SQL syntax */

cunt := count + 1; END

35

(identifying the modified table, Students, and the kind of modifying

statement, an INSERT), and the third field is the number of inserted

Students tuples with age < 18. (The trigger in Figure 5.19 only

computes the count; an additional trigger is required to insert the

appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students

 /* Event */

REFERENCING NEW TABLE AS Inserted Tuples

 FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count)

SELECT
‘Students’, ‘Insert’, COUNT * FROM

InsertedTuples I WHERE I.age < 18

BEGIN

count := 0;

END

SQL: Overview, The Form of Basic SQL Query -UNION,

INTERSECT, and EXCEPT– join operations: equi join and

non equi join-Nested queries - correlated and

uncorrelated- Aggregate Functions-Null values,

GROUPBY- HAVING Clause.

THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and

explains its meaning through a conceptual evaluation strategy.

A conceptual evaluation strategy is a way to evaluate the query

that is intended to be easy to understand, rather than

36

efficient. A DBMS would typically execute a query in a different

and more efficient way.

Figure 5.1An Instance S 3 of Sailors Figure 5.2 An Instance R2 of

Reserves

bid bname color

101 Interlak e blue

102 Interlake red

103 Clipper gree n

104 Marine red

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age FROM Sailors S

The answer to this query with and without the keyword DISTINCT on

instance S3 of Sailors is shown in Figures 5.4 and 5.5. The only

difference is that the tuple for Horatio appears twice if DISTINCT is

omitted; this is because there are two sailors called Horatio and age 35.

(Q11) Find all sailors with a rating above 7.

Sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

37

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE S.rating

> 7

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid FROM Boats B, Reserves R WHERE B.bid = R.bid AND

B.color = ‘red’

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color FROM Sailors S, Reserves R, Boats

B WHERE S.sid = R.sid AND R.bid = B.bid AND

S.sname = ‘Lubber’

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname FROM Sailors S, Reserves R WHERE
S.sid = R.sid

Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than

just a list of columns. Each item in a select-list can be of the

form expression AS column name, where expression is any

arithmetic or string expression over column names (possibly

prefixed by range variables) and constants.

(Q5) Compute increments for the ratings of persons

who have sailed two different boats on the same day.

38

SELECT S.sname, S.rating+1 AS rating FROM Sailors

S, Reserves R1, Reserves R2 WHERE S.sid = R1.sid

AND S.sid = R2.sid AND R1.day = R2.day AND R1.bid

<> R2.bid

Also, each item in a qualification can be as general as expression1 =

expression2.

SELECT S1.sname AS name1, S2.sname AS name2

FROM Sailors S1, Sailors S2 WHERE 2*S1.rating =

S2.rating-1.

(Q6) Find the ages of sailors whose name begins and
ends with B and has at least three characters.

SELECT S.age FROM Sailors S WHERE S.sname LIKE ‘B %B’

The only such sailor is Bob, and his age is 63.5.

UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic

query form pre- sented earlier. Since the answer to a query is a multiset of

rows, it is natural to consider the use of operations such as union,

intersection, and difference. SQL supports these operations under the

names UNION, INTERSECT, and EXCEPT.4 SQL also provides other set

operations: IN (to

check if an element is in a given set),op ANY,op ALL(tocom-pare a value

with the elements in a given set, using comparison operator op), and

EXISTS (to check if a set is empty). IN and EXISTS can be prefixed by NOT,

39

with the obvious modification to their meaning. We cover UNION,

INTERSECT, and EXCEPT in this section. Consider the following query:

(Q1) Find the names of sailors who have reserved both a red and a

green boat.

SELECT S.sname FROM Sailors S, Reserves R1, Boats B1, Reserves R2,

Boats B2 WHERE S.sid = R1.sid AND R1.bid = B1.bid AND S.sid = R2.sid

AND R2.bid

= B2.bid AND B1.color=‘red’ AND B2.color = ‘green’

(Q2) Find the sids of all sailors who have reserved red boats but not

green boats.

SELECT S.sid FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ EXCEPT

SELECT S2.sid FROM Sailors S2, Reserves R2, Boats B2 WHERE S2.sid

= R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Joins

The join operation is one of the most useful operations in relational

algebra and is the most commonly used way to combine information

from two or more relations. Although a join can be defined as a cross-

product followed by selections and projections, joins arise much more

frequently in practice than plain cross-products.joins have received a

lot of attention, and there are several variants of the join operation.

Condition Joins

The most general version of the join operation accepts a

join condition c and a pair of relation instances as

40

arguments, and returns a relation instance. The join

condition is identical to a selection condition in form. The

operation is defined as follows:

R 𝖺⊳c S = σc(R × S)

Thus 𝖺⊳ is defined to be a cross-product followed by a

selection. Note that the condition c can (and typically does)

refer to attributes of both R and S.

 Figure 4.12 S1 𝖺⊳S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R 𝖺⊳ S is when the join

condition con- sists solely of equalities (connected by 𝖠) of the form

R.name1 = S.name2, that is, equalities between two fields in R and S.

In this case, obviously, there is some redun- dancy in retaining both

attributes in the result.

Natural Join

A further special case of the join operation R 𝖺⊳ S is an equijoin in which

equalities are specified on all fields having the same name in R and S. In this

case, we can simply omit the join condition; the default is that the join

condition is a collection of equalities on all common fields.

Non Equi Join

The SQL NON EQUI JOIN uses comparison operator instead of the equal sign

like >, <, >=,

<= along with conditions.

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 58 103 11/12/96

31 Lubbe r 8 55.5 58 103 11/12/96

41

NESTED QUERIES

A nested query is a querythat has another query embedded within it; the

embedded query is called a subquery.

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid = 103)

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid IN (SELECT B.bid

FROM Boats B

WHERE B.color = ‘red’)

(Q3) Find the names of sailors who have not reserved a red boat.

SELECT S.sname FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

FROM Reserves R

WHERE R.bid IN (SELECT B.bid

FROM Boats B

WHERE B.color = ‘red’)

SELECT *

FROM table_name1, table_name2

WHERE table_name1.column [> | < | >= | <=] table_name2.column;

42

Correlated Nested Queries

In the nested queries that we have seen thus far, the inner subquery has

been completely independent of the outer query:

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT

S.sname
FROM

Sailors
S

WHERE

EXISTS

(

SELECT

*

FROM Reserves R

WHERE R.bid = 103

AND R.sid = S.sid)

Set-Comparison Operators

(Q1) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname = ‘Horatio’)

(Q2) Find the sailors with the highest rating .

SELECT S.sid

FROM Sailors S

WHERE S.rating >= ALL (SELECT

S2.rating FROM Sailors S2)

43

More Examples of Nested Queries

(Q1) Find the names of sailors who have reserved both a red and a green

boat.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid
AND B.color = ‘red’ AND S.sid IN (
SELECT S2.sid

FROM Sailors S2, Boats
B2, Reserves R2 WHERE
S2.sid = R2.sid AND
R2.bid = B2.bid

AND B2.color = ‘green’)

 Noncorrelated

There are two kind of subquery in SQL one is called non-correlated

and other is called correlated subquery. In non correlated

subquery, inner query doesn't depend on outer query and can

run as stand alone query.Subquery used along-with IN or NOT IN

sql clause is good examples of Noncorrelated subquery in SQL.

Let's a noncorrelated subquery example to understand it better

NonCorrelated subquery are used along-with IN and NOT IN

clause. here is an example of subquery with IN clause in SQL.

SQL query: Find all stocks from United States and India

44

AGGREGATE OPERATORS

We now consider a powerful class of constructs for computing

aggregate values such as MIN

and SUM.

1. COUNT ([DISTINCT] A): The number of (unique) values in the A

column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A
column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

(Q1) Find the average age of all sailors.

SELECT AVG (S.age) FROM Sailors S

Q2) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)

FROM Sailors S

WHERE S.rating = 10

mysql> SELECT COMPANY FROM Stock WHERE LISTED_ON_EXCHANGE IN (SELECT RIC FRO

45

SELECT S.sname, MAX (S.age)

FROM Sailors S

Q3) Count the number of sailors.

SELECT COUNT (*)

FROM Sailors S

NULL VALUES

we have assumed that column values in a row are always known. In

practice column values can be unknown. For example, when a

sailor, say Dan, joins a yacht club, he may not yet have a rating

assigned. Since the definition for the Sailors table has a rating

column, what row should we insert for Dan? What is needed here is

a special value that denotes unknown.

SQL provides a special column value called null to use in such

situations. We use null when the column value is either unknown or

inapplicable. Using our Sailor table definition, we might enter the

row 〈 98, Dan, null, 39 〉 to represent Dan. The presence of null

values complicates many issues, and we consider the impact of null

values on SQL in this section.

Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the

row for Dan, is this condition true or false? Since Dan’s rating is

unknown, it is reasonable to say that this comparison should

evaluate to the value unknown.

SQL also provides a special comparison operator IS NULL to test

whether a column value is null; for example, we can say rating IS

NULL, which would evaluate to true on the row representing Dan.

46

We can also say rating IS NOT NULL, which would evaluate to false

on the row for Dan.

Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age

< 40 and rating = 8 AND age < 40? Considering the row for Dan

again, because age < 40, the first expression evaluates to true

regardless of the value of rating, but what about the second? We can

only say unknown.

The GROUP BY and HAVING Clauses

we want to apply aggregate operations to each of a number

of groups of rows in a relation, where the number of groups

depends on the relation instance (i.e., is not known in

advance). (Q31) Find the age of the youngest sailor for

each rating level.

SELECT MIN (S.age)

FROM Sailors S

WHERE S.rating = i

Q32) Find the age of the youngest sailor who is eligible to
vote (i.e., is at least 18 years old) for each rating level with at
least two such sailors.

SELECT S.rating, MIN (S.age) AS

minageGROUP BY S.rating HAVING

 COUNT (*) > 1

47

More Examples of Aggregate Queries

Q3) For each red boat, find the number of reservations for this boat.

SELECT B.bid, COUNT (*) AS sailorcount FROM

Boats B, Reserves R WHERE R.bid = B.bid AND

B.color = ‘red’ GROUP BY B.bid

SELECT B.bid, COUNT (*) AS sailorcount FROM

Boats B, Reserves R WHERE R.bid = B.bid GROUP

BY B.bid HAVING B.color = ‘red’

(Q4) Find the average age of sailors for each rating level that has at least
two sailors.

SELECT S.rating, AVG

(S.age) AS avgage FROM

 Sailors S

GROUP
BY

S.rating

HAVING COUNT (*) > 1

(Q5) Find the average age of sailors who are of voting age (i.e., at least 18

years old) for

each rating level that has at least two sailors.

SELECT S.rating, AVG

(S.age) AS avgage FROM

 Sailors S

WHERE S. age >= 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2 WHERE S.rating = S2.rating

48

(Q6) Find the average age of sailors who are of voting age (i.e.,
at least 18 years old) for each rating level that has at least two
such sailors.

SELECT S.rating, AVG
(S.age) AS avgage FROM
 Sailors S

WHERE S. age > 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2

WHERE S.rating = S2.rating AND S2.age >= 18)

The above formulation of the query reflects the fact that it is a variant

of Q35. The answer to Q36 on instance S3 is shown in Figure 5.16.

It differs from the answer to Q35 in that there is no tuple for rating

10, since there is only one tuple with rating 10 and age≥ 18.

SELECT S.rating, AVG (S.age) AS

avgage FROM Sailors S

WHERE S. age > 18

GROUP BY S.rating HAVING

 COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE

clause is applied before grouping is done; thus, only sailors with age

> 18 are left when grouping is done. It is instructive to consider yet

another way of writing this query:

SELECT Temp.rating, Temp.avgage

FROM (SELECT S.rating, AVG (S.age) AS

avgage, COUNT (*) AS ratingcount

FROM Sailors S WHERE S. age > 18 GROUP BY

S.rating) AS Temp WHERE Temp.ratingcount > 1

49

Parallelism in Query in DBMS

Parallelism in a query allows us to parallel execution of multiple queries by

decomposing them into the parts that work in parallel. This can be

achieved by shared-nothing architecture. Parallelism is also used in

fastening the process of a query execution as more and more resources like

processors and disks are provided. We can achieve parallelism in a query

by the following methods :

1. I/O parallelism

2. Intra-query parallelism

3. Inter-query parallelism

4. Intra-operation parallelism

5. Inter-operation parallelism

1. I/O parallelism :

It is a form of parallelism in which the relations are partitioned on multiple

disks a motive to reduce the retrieval time of relations from the disk.

Within, the data inputted is partitioned and then processing is done in

parallel with each partition. The results are merged after processing all the

partitioned data. It is also known as data-partitioning. Hash partitioning

has the advantage that it provides an even distribution of data across the

disks and it is also best suited for those point queries that are based on the

partitioning attribute. It is to be noted that partitioning is useful for the

sequential scans of the entire table placed on ‘n‘ number of disks and the

time taken to scan the relationship is approximately 1/n of the time

required to scan the table on a single disk system. We have four types of

partitioning in I/O parallelism:

50

 Hash partitioning

As we already know, a Hash Function is a fast, mathematical function.

Each row of the original relationship is hashed on partitioning

attributes. For example, let’s assume that there are 4 disks disk1, disk2,

disk3, and disk4 through which the data is to be partitioned. Now if the

Function returns 3, then the row is placed on disk3.

 Range partitioning

In range partitioning, it issues continuous attribute value ranges to each

disk. For example, we have 3 disks numbered 0, 1, and 2 in range

partitioning, and may assign relation with a value that is less than 5 to

disk0, values between 5-40 to disk1, and values that are greater than 40 to

disk2. It has some advantages, like it involves placing shuffles containing

attribute values that fall within a certain range on the disk. See figure

1: Range partitioning given below:

 Round-robin partitioning

In Round Robin partitioning, the relations are studied in any order. The ith

tuple is sent to the disk number(i % n). So, disks take turns receiving new

rows of data. This technique ensures the even distribution of tuples across

disks and is ideally suitable for applications that wish to read the entire

relation sequentially for each query.

51

 Schema partitioning

In schema partitioning, different tables within a database are placed on different

disks. See figure 2 below:

figure – 2

2. Intra-query parallelism :

 Intra-query parallelism refers to the execution of a single query in a parallel

process on different CPUs using a shared-nothing paralleling architecture

technique. This uses two types of approaches:

 First approach

In this approach, each CPU can execute the duplicate task against some data

portion.

 Second approach

In this approach, the task can be divided into different sectors with each CPU

executing a distinct subtask.

2. Inter-query parallelism :

In Inter-query parallelism, there is an execution of multiple transactions by each

CPU. It is called parallel transaction processing. DBMS uses transaction

dispatching to carry inter query parallelism. We can also use some different

methods, like efficient lock management. In this method, each query is run

sequentially, which leads to slowing down the running of long queries. In such

cases, DBMS must understand the locks held by different transactions running on

different processes. Inter query parallelism on shared disk architecture performs

best when transactions that execute in parallel do not accept the same data. Also,

it is the easiest form of parallelism in DBMS, and there is an increased

transaction throughput.

52

3. Intra-operation parallelism :

Intra-operation parallelism is a sort of parallelism in which we parallelize the

execution of each individual operation of a task like sorting, joins, projections, and

so on. The level of parallelism is very high in intra-operation parallelism. This type

of parallelism is natural in database systems. Let’s take an SQL query example:

 SELECT * FROM Vehicles ORDER BY Model_Number;

In the above query, the relational operation is sorting and since a relation can

have a large number of records in it, the operation can be performed on different

subsets of the relation in multiple processors, which reduces the time required to

sort the data.

5. Inter-operation parallelism :

When different operations in a query expression are executed in parallel, then it is

called inter-operation parallelism. They are of two types –

 Pipelined parallelism –

 In pipeline parallelism, the output row of one operation is consumed by the

second operation even before the first operation has produced the entire set of

rows in its output. Also, it is possible to run these two operations

simultaneously on different CPUs, so that one operation consumes tuples in

parallel with another operation, reducing them. It is useful for the small

number of CPUs and avoids writing of intermediate results to disk.

 Independent parallelism –

In this parallelism, the operations in query expressions that are not dependent on

each other can be executed in parallel. This parallelism is very useful in the case

of the lower degree of parallelism.

53

UNIT-II

Distributed Databases

 Heterogeneous and Homogeneous Databases

 Distributed Data Storage Distributed Transactions

Commit Protocols

 Concurrency Control in Distributed Databases

 Availability

 Distributed Query Processing

 Heterogeneous

 Distributed Databases

 Directory Systems

 Distributed Database System

 A distributed database system consists of loosely coupled

sites that share no physical component

 Database systems that run on each site are independent

of each other

 Transactions may access data at one or more sites

Homogeneous Distributed Databases

 In a homogeneous distributed Database

 All sites have identical software

54

 Are aware of each other and agree to cooperate in processing

user requests.

 Each site surrenders part of its autonomy in terms of right to

change schemas or software

 Appears to user as a single system

 In a heterogeneous distributed database

 Different sites may use different schemas and software

 Difference in schema is a major problem for query processing

Difference in software is a major problem for transaction

 Sites may not be aware of each other and may provide only

limited facilities for cooperation in transaction processing

 Distributed Data Storage

 Assume relational data model Replication

 System maintains multiple copies of data, stored in

different sites, for faster retrieval and fault tolerance.

 Fragmentation

 Relation is partitioned into several fragments stored

in distinct sites Replication and fragmentation can

be combined

55

 Relation is partitioned into several fragments:

system maintains several identical replicas of

each such fragment.

 Data Replication

 A relation or fragment of a relation is replicated if it

is stored redundantly in two or more sites.

 Full replication of a relation is the case where the

relation is stored at all sites.

 Fully redundant databases are those in which every

site contains a copy of the entire database.

Advantages of Replication

 Availability: failure of site containing relation r does not

result in unavailability of r is replicas exist.

 Parallelism: queries on r may be processed by several

nodes in parallel.

 Reduced data transfer: relation r is available locally at

each site containing a replica of r.

Disadvantages of Replication

 Increased cost of updates: each replica of relation r must be updated.

 Increased complexity of concurrency control: concurrent

updates to distinct replicas may lead to inconsistent data

56

unless special concurrency control mechanisms are

implemented.

 One solution: choose one copy as primary copy and

apply concurrency control operations on primary copy

 Data Fragmentation

 Division of relation r into fragments r1, r2, …, rn which

contain sufficient information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r is assigned to

one or more fragments

 Vertical fragmentation: the schema for relation r is split

into several smaller schemas

 All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.

 A special attribute, the tuple-id attribute may be added

to each schema to serve as a candidate key.

57

HORIZONTAL FRAGMENTATION OF ACCOUNT RELATION

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = branch_name=“Hillside” (account)

branch_name

account_number

Balance

Valleyview

Valleyview

Valleyview

Valleyview

 A-177
 A-402
 A-408
 A-639

205
10000
1123
750

account2 = branch_name=“Valleyview” (account)

58

VERTICAL FRAGMENTATION OF EMPLOYEE_INFO RELATION

branch_name

customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
 Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

1
2
3
4
5
6
7

deposit1 = branch_name, customer_name, tuple_id (employee_info)

Advantages of Fragmentation

 Horizontal:

 allows parallel processing on fragments of a relation

 allows a relation to be split so that tuples are located where

they are most frequently accessed

59

Vertical:

 allows tuples to be split so that each part of the tuple is

stored where it is most frequently accessed tuple-id attribute

allows efficient joining of vertical fragments allows parallel

processing on a relation

 Vertical and horizontal fragmentation can be mixed.

 Fragments may be successively fragmented to an arbitrary depth.

 Data Transparency

Data transparency: Degree to which system user may remain unaware

of the details of how and where the data items are stored in a

distributed system

Consider transparency issues in relation to:

1. Fragmentation transparency

2. Replication transparency

3. Location transparency

 Naming of Data Items

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items

transparently.

4. Each site should be able to create new data items autonomously.

60

System Failure Modes

Failures unique to distributed systems:

 Failure of a site.

 Loss of massages

 Handled by network transmission control protocols

such as TCP-IP

Failure of a communication link

 Handled by network protocols, by routing

messages via alternative links

 Network partition

 A network is said to be partitioned when it has been

split into two or more subsystems that lack any

connection between them

 Note: a subsystem may consist of a single node Network partitioning and site

 failures are generally indistinguishable.

 Commit Protocols

Commit protocols are used to ensure atomicity across sites a transaction

which executes at multiple sites must either be committed at all the sites,

or aborted at all the sites.

61

i

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do

not cause any other harm, such as sending incorrect messages to

other sites.

 Execution of the protocol is initiated by the coordinator after the

last step of the transaction has been reached.

 The protocol involves all the local sites at which the transaction

executed.

 Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

Handling of Failures

When site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

Log contain <commit T> record: txn had completed, nothing to be

done n Log contains <abort T> record: txn had completed,

nothing to be done

Log contains <ready T> record: site must consult C to

determine the fate of T.

 If T committed, redo (T); write <commit T> record If T aborted, undo (T)

The log contains no log records concerning T:

62

k k

 Implies that S failed before responding to the prepare T message

from Ci since the failure of S precludes the sending of such a

response, coordinator C1 must abort T Sk must execute undo (T)

Recovery and Concurrency Control

In-doubt transactions have a <ready T>,

but neither a <commit T>, nor an

<abort T> log record.

 The recovering site must determine the commit-abort

status of such transactions by contacting other sites;

this can slow and potentially block recovery.

 Recovery algorithms can note lock information in the log.

 Instead of <ready T>, write out <ready T, L> L = list of

locks held by T when the log is written (read locks

can be omitted).

 For every in-doubt transaction T, all the locks noted in the

<ready T, L> log record are reacquired.

 After lock reacquisition, transaction processing can resume; the

commit or rollback of in-doubt transactions is performed

concurrently with the execution of new transactions.

 Three Phase Commit (3PC)

 Assumptions:

1. No network partitioning

2. At any point, at least one site must be up.

3. At most K sites (participants as well as coordinator) can fail

63

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC

Phase 1. l Every site is ready to commit if instructed to

do so

 Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

In phase 2 coordinator makes a decision as in 2PC (called the pre-

commit decision) and records it in multiple (at least K) sites

In phase 3, coordinator sends commit/abort message to all

participating sites, Under 3PC, knowledge of pre-commit

decision can be used to commit despite coordinator failure

Avoids blocking problem as long as < K sites fail n

 Drawbacks:

 Higher overheads assumptions may not be satisfied in practice

Concurrency Control

Modify concurrency control schemes for use in distributed environment.

o We assume that each site participates in the execution of a commit

protocol to ensure global transaction atomicity.

o We assume all replicas of any item are updated

o Will see how to relax this in case of site failures later

Time stamping

 Timestamp based concurrency-control protocols can be used in

distributed systems

Each transaction must be given a unique timestamp

Main problem: how to generate a timestamp in a distributed fashion

 Each site generates a unique local timestamp using either a

logical counter or the local clock.

64

 Global unique timestamp is obtained by concatenating the

unique local timestamp with the unique identifier.

Define within each site Si a logical clock (LCi), which generates the

unique local timestamp

 Require that Si advance its logical clock whenever a request is

received from a transaction Ti with timestamp < x,y> and x is

greater that the current value of LCi.

 In this case, site Si advances its logical clock to the value x + 1.

 Distributed Query Processing

 For centralized systems, the primary criterion for measuring the

cost of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into

account:

 The cost of a data transmission over the network.

 The potential gain in performance from having several sites

process parts of the query in parallel.

65

UNIT-III

SPATIAL DATABASE

 A spatial database is a general-purpose database (usually a relational

database) that has been enhanced to include spatial data that represents objects

defined in a geometric space, along with tools for querying and analysing such

data.

Geodatabase:

 A Geographic Database, sometimes known as a Geodatabase, is a

Georeferenced Spatial Database that is used to store and modify geodata or

information about a specific place on Earth. Additionally, the term "geodatabase"

can refer to a collection of exclusive geographic database formats

called Geodatabase.

Characteristics of Spatial Database:

One or more spatial data types that enable the recording of spatial data as

values in a table are the fundamental capability that a spatial extension to a

database adds. Based on the vector data model, a single spatial value is often a

geometric primitive (points, lines, polygon, etc.). The OGC Simple Features definition

for describing geometric primitives serves as the foundation for most spatial

databases' data types. Raster data can also be stored in some spatial databases.

Spatial Databases must support the tracking and manipulation of coordinate

systems since every geographic place must be described using a spatial reference

system.

 The addition of geographic capabilities to the query language (such as SQL),

which gives the Spatial Database access to the exact query, analysis, and

66

manipulation operations as standard GIS software, is the second significant

functionality extension in a spatial database. This feature is implemented as a

collection of new methods that can be used in SQL SELECT statements in the

majority of Relational Database Management Systems.

There are Several Types of Operations like:

o Measurement:

Computes geometry distance, polygon area, line length, etc.

o Geoprocessing:

Create new features by changing existing ones, for as by surrounding them

with a buffer or by intersecting features.

o Geometry Constructors:

Specifies the vertices (points or nodes) that define the form to create new

geometries.

o Observer Functions:

Queries that give detailed answers on a feature, like the location of a circle's

center.

o Predicates:

True/false questions about the spatial relationships between geometries are

permissible.

Spatial Index:

Indexes are frequently used in database systems to provide faster and more effective

data access and search. But spatial queries are not a good fit for this index. Instead,

to improve database efficiency, geographical databases employ something similar to

a distinct index known as a Spatial Index. A system must be able to obtain data

from a vast collection of items without actually searching them all. Hence Spatial

Indexing is crucial. In addition to filtering, it ought to better allow connections

between objects from various classes.

67

In addition to indexes, geographical databases also provide spatial data types

in their query language and data model. To give a basic abstraction and represent

the structure of the spatial figures with their related interactions and processes in

the geographical environment, these databases require unique sorts of data types.

The system would be unable to provide the level of modelling that a spatial database

enables without these kinds of data types.

Spatial Query:

A unique kind of sql query supported by spatial databases, especially

geodatabases, is known as a Spatial Query. The queries have a number of significant

differences from non-spatial SQL queries. The usage of geometry data types,

including points, lines, and polygons, as well as the fact that these queries take the

spatial relationship between these geometries into account, are two of the most

crucial features.

The Predicate Calculus

A predicate is an expression of one or more variables defined on some specific

domain. A predicate with variables can be made a proposition by either assigning a

value to the variable or by quantifying the variable.

Consider the following statement.

 Ram is a student.

Now consider the above statement in terms of Predicate calculus.

 Here "is a student" is a predicate and Ram is subject.

 Let's denote "Ram" as x and "is a student" as a predicate P then we can write

the above statement as P(x).

 Generally a statement expressed by Predicate must have at least one object

associated with Predicate. In our case, Ram is the required object with

associated with predicate P.

68

PROPOSITIONAL CALCULUS

 Given two numbers, we have various ways of combining them: add them,

multiply them, etc. We can also take the negative or absolute value or square of a

single number, and apply various functions to a given number. In other words, we

can perform various operations on both individual numbers and on collections of

numbers, and this endows the set of all numbers with a rich structure (e.g.

arithmetic).

Propositions.

The first thing to do is to formally define what ‘mathematical assertion’ means. We

shall refer to a mathematical assertion as a proposition; the book uses the word

statement for this concept. Definition. A proposition is a statement that is either

true or false, but not both, neither, or sometimes one and sometimes the other.

 For example:

(1) Williams College is located in Williamstown. is a proposition (because it’s true).

(2) Leo is a frog. is a propositions (because it’s false).

(3) You are located in Williamstown. is not a proposition, because it’s sometimes

true and sometimes false.

(4) This statement is false. is not a proposition, because it is neither true nor false.

(5) Every even number larger than 2 is the sum of two primes. is a proposition,

because it’s either true or false.

69

Deductive Databases

A deductive database in SQL or any other database system is a tool that can draw

conclusions about new facts based on the rules and information already present in

the database. In deductive databases, datalog is the language commonly used to

express facts, rules, and queries. The formula, when expressed in clausal form,

consists of a number of clauses, each of which is made up of a number of literals

joined exclusively by logical connectives marked with the OR symbol.

The following quantifiers are possible in a formula −

Universal quantifier − It may be read as "For all x, P(x) holds," which denotes that

P(x) holds for all instances of x in the universe.

Trucks, for instance, all have wheels.

Existential quantifier − It means that P(x) holds for at least one item x in the

universe and is expressed as "There exists an x such that P(x)".

70

UNIT - IV

XML Database

XML database is a data persistence software system used for storing the huge

amount of information in XML format. It provides a secure place to store XML

documents.

You can query your stored data by using XQuery, export and serialize into desired

format. XML databases are usually associated with document-oriented databases.

Types of XML databases

There are two types of XML databases.

1. XML-enabled database

2. Native XML database (NXD)

XML-enable Database

XML-enable database works just like a relational database. It is like an extension

provided for the conversion of XML documents. In this database, data is stored in

table, in the form of rows and columns.

Native XML Database

Native XML database is used to store large amount of data. Instead of table format,

Native XML database is based on container format. You can query data by XPath

expressions.

71

Native XML database is preferred over XML-enable database because it is highly

capable to store, maintain and query XML documents.

Let's take an example of XML database:

1. <?xml version="1.0"?>

2. <contact-info>

3. <contact1>

4. <name>Vimal Jaiswal</name>

5. <company>SSSIT.org</company>

6. <phone>(0120) 4256464</phone>

7. </contact1>

8. <contact2>

9. <name>Mahesh Sharma </name>

10. <company>SSSIT.org</company>

11. <phone>09990449935</phone>

12. </contact2>

13. </contact-info>

In the above example, a table named contacts is created and holds the contacts

(contact1 and contact2). Each one contains 3 entities name, company and phone.

XML Hierarchical (Tree) Data Model

The basic object is XML is the XML document.

 There are two main structuring concepts that are used to construct an XML

document:

 Elements

 Attributes

 Attributes in XML provide additional information that describe elements.

As in HTML, elements are identified in a document by their start tag and end tag.

72

The tag names are enclosed between angled brackets , and end tags are further

identified by a backslash .

Complex elements are constructed from other elements hierarchically, whereas

simple elements contain data values.

It is straightforward to see the correspondence between the XML textual

representation and the tree structure.

 In the tree representation, internal nodes represent complex elements, whereas

leaf nodes represent simple elements,That is why the XML model is called a tree

model or a hierarchical model.

Three main types of XML documents:

1. Data-centric XML documents : These documents have many small data items

that follow a specific structure, and hence may be extracted from a structured

database. They are formatted as XML documents in order to exchange them or

display them over the Web.

2. Document-centric XML documents: These are documents with large amounts of

text, such as news articles or books. There is little or no structured data elements

in these documents.

 3. Hybrid XML documents: These documents may have parts that contains

structured data and other parts that are predominantly textual or unstructured.

Two types of XML

 Well-Formed XML

 Valid XML

Well-Formed XML

 It must start with an XML declaration to indicate the version of XML being used—

as well as any other relevant attributes.

Valid XML

 A stronger criterion is for an XML document to be valid.

73

 In this case, the document must be well-formed, and in addition the element

names used in the start and end tag pairs must follow the structure

specified in a separate XML DTD (Document Type Definition) file or XML

schema file.

XML SCHEMA

An XML Schema describes the structure of an XML document, just like a DTD.

The XML Schema language is also referred to as XML Schema Definition (XSD).

XSD Example

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

74

The purpose of an XML Schema is to define the legal building blocks of an XML

document:

 the elements and attributes that can appear in a document

 the number of (and order of) child elements

 data types for elements and attributes

 default and fixed values for elements and attributes

XML Querying

 XQuery

 XQuery uses XPath expressions, but has additional constructs. XQuery

permits the specification of more general queries on one or more XML

documents. The typical form of a query in XQuery is known as a FLWR

expression, which stands for the four main clauses of XQuery and has the

following form:

 FOR <Variable bindings to individual nodes>

 LET <Variable bindings to collections of nodes (elements)>

 WHERE <qualifier conditions>

 RETURN <query result specification>

 XHTML was developed to make HTML more extensible and flexible to work with

other data formats (such as XML). In addition, browsers ignore errors in HTML

pages, and try to display the website even if it has some errors in the markup.

An XHTML document must have an XHTML <!DOCTYPE> declaration.

The <html>, <head>, <title>, and <body> elements must also be present, and the

xmlns attribute in <html> must specify the xml namespace for the document.

75

Example

How to create a Hello World page in XHTML?

The Hello World page of XHTML looks like this

1. <?xml version="1.0" encoding="iso-8859-1"?>

2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

3. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

4. <html xml:lang="en" lang="en" xmlns="http://www.w3.org/1999/xhtml">

5. <head>

6. <title>Hello World</title>

7. </head>

8. <body>

9. <p>My first Web page.</p>

10. </body>

11. </html>

76

UNIT-V

Multimedia Database in DBMS

DBMS Multimedia Database

Multimedia database is a collection of multimedia data which includes text,

images, graphics (drawings, sketches), animations, audio, video, among others.

These databases have extensive amounts of data which can be multimedia and

multisource. The framework which manages these multimedia databases and

their different types so that the data can be stored, utilized, and delivered in

more than one way is known as a multimedia database management system.

The multimedia database can be classified into three types. These types

are:

1. Static media

2. Dynamic media

3. Dimensional media

The contents of a multimedia database management system can be:

1. Media data: It is the actual data which represents an object.

2. Media format data: The information such as resolution, sampling rate,

encoding system, etc. about the format of the media data under consideration

after is undergoes acquisition, processing, and encoding is the media format

data.

3. Media keyword data: Media keyword data are the keyword description related

to the generation of data. This data is also known as content descriptive data.

Examples of content descriptive data are place, time, date of recording.

77

4. Media feature data: Media feature data contains data which is content

dependent such as kind of texture, distribution of, and the different shapes

present in the data.

The types of multimedia applications that are based on the data

management characteristics are:

1. Repository applications: An extensive amount of multimedia data stored

along with metadata for retrieval purposes.

2. Presentation applications: These involve the delivery of multimedia data

subject to the temporal constraint. An optimal viewing or listening experience

requires DBMS to deliver the data at a certain rate which offers the quality of

service, which is above a particular threshold. This data is processed as it is

being delivered.

3. Collaborative work using multimedia information: It involves the execution

of a complex task by merging drawings and changing notifications.

This still leads to a number of challenges to multimedia databases.

These are:

1. Modelling: Work in this area can improve the database versus information

retrieval techniques.

2. Design: The physical, conceptual, and logical design of multimedia databases

is not addressed entirely leading to performance and tuning issues.

3. Storage: The storage of databases on a standard disc can lead to problems

like representation, mapping to disc hierarchies, compression, etc.

4. Performance: Audio-video synchronization and audio playback applications

are where physical limitations dominate. Parallel processing can reduce these

problems, but these techniques have not been completely developed yet.

Multimedia databases also consume a lot of processing power and bandwidth.

78

5. Queries and Retrieval: Multimedia such as images, audio, video lead to

retrieval and queries issues such as efficient query formation, query execution,

etc.

Multimedia Database Applications:

1. Documents and record management: Industries which keep a lot of

documentation and records. Ex: Insurance claim industry.

2. Knowledge dissemination: Multimedia database is an extremely efficient

tool for knowledge dissemination and providing several resources. Ex:

electronic books

3. Education and training: Multimedia sources can be used to create

resources useful in education and training. These are popular sources of

learning in recent days. Ex: Digital libraries.

4. Real-time monitoring and control: Multimedia presentation when

coupled with active database technology can be an effective means for

controlling and monitoring complex tasks. Ex: Manufacture control.

5. Marketing

6. Advertisement

7. Retailing

8. Entertainment

9. Travel

Multimedia database is database containing multimedia collections.

• Multimedia database management system is essential to manage

multimedia data like text, graphics, animation, music, etc.

• Multimedia database management system can be defined as a software

system that manages a collection of multimedia data and provides access

to users to query and retrieve multimedia objects. • Generally,

79

multimedia database contains text, image, animation, video, audio,

movie, sound etc. which is stored in binary form.

• SQL query language is used for query and retrieval of data.

• There are generally two types of multimedia databases

• Linked Multimedia Databases and Embedded Multimedia Databases.

• Linked multimedia databases In this database, multimedia elements

are organized as image, audio/ MP3, video etc. All the data may be stored

either on off-line sources (CD-ROM, Hard Disc, DVD etc.) or on Online

sources. One great advantage of this type of database is that the size of

database will be small due to the reason that multimedia elements are

not embedded in the database, but only linked to it.

• Embedded multimedia database Embedded Multimedia Database

implies that the database itself contains the multimedia objects as in the

binary form in the database. The main advantage of such kind of

database is that retrieval of data will be faster because of the reduced

data access time. However, the size of the database will be very large.

Characteristics of MDBMS

• A MDBMS (Multimedia Database Management System) can be

characterized based on its objectives at the time of handling multimedia

objects.

• Corresponding storage media: Multimedia data must be stored and

managed according to the specific characteristics of the available storage

media.

• Comprehensive search methods: During a search in the database, an

entry, given in the form of text or a graphical image, is found using

different search queries and the corresponding search methods.

80

• Format independent interface: database queries should be

independent of media format. MDBMS should provide information in

formats requested by the application.

• Simultaneous data access: The same multimedia data can be accessed

(even simultaneously) through different queries by several applications.

Hence, consistent access to shared data can be implemented.

• Management of large amount of data: The MDBMS must be capable

of handling and managing large amounts of data.

• Long Transaction: The performance of a transaction in a MDBMS

means that transfer of a large amount of data will take a long time and

must be done in a reliable manner.

• Real-time Data: The read and write operations of continuous data

must be done in real-time. The data transfer of continuous data has a

higher priority than other database management actions.

Operations of multimedia databases:

• Input (insert/record) operation: The data will be written to the database.

The raw and registering data are always needed; descriptive data can be

attached later.

• Output (play) operation: It involves reading the raw data from the

database according to the registered data.

• Modification: It involves changing of raw, registering and descriptive

data. Modification can also be understood as a data conversion from one

format to another.

• Deletion Operation: This operation removes an entry from the database.

The consistency of the data must be preserved.

81

Examples of multimedia database application areas:

 Digital Libraries.

 News-on-Demand.

 Video-on-Demand.

 Music database.

 Geographic Information Systems (GIS)

 Telemedicine.

	1. Data Definition Language (DDL)
	2. Data manipulation language (DML)
	3. Data Control Language (DCL)
	4. Transaction Control Language (TCL)
	Database Users
	End Users

	DBA
	1. Software installation and Maintenance
	2. Data Extraction, Transformation, and Loading
	3. Specialized Data Handling
	4. Database Backup and Recovery
	5. Security
	6. Authentication
	7. Capacity Planning
	8. Performance Monitoring
	9. Database Tuning
	10. Troubleshooting

	Introduction to relational model:
	Tabular Representation of Various ER Schemas
	ER Diagram Notations
	Weak Entity Set-
	Views
	Triggers.
	(Q3) Find the colors of boats reserved by Lubber.
	(Q1) Find the names of sailors who have reserved boat 103.
	Noncorrelated
	Geodatabase:
	Characteristics of Spatial Database:

	XML Database
	Types of XML databases
	XML-enable Database
	Native XML Database
	XSD Example

	Multimedia Database Applications:
	Characteristics of MDBMS
	Operations of multimedia databases:

